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We describe a numerical method for solving the steady, three-dimensional, incompressible 
Navier-Stokes equations in cylindrical geometry. Also, we present results of computations in 
which this method is used to determine the flow in fluid-filled cylinders undergoing spinning 
and coning motion. Second-order accurate central finite difference formulas are used to 
approxrmate derrvatrves m the radial and axial directions and a Fourier method is used to 
approximate the angular derivatives. Nonuniform grids are used to improve the resolution of 
the velocity and pressure near the cylinder walls. The system of difference equations is solved 
using an iterative method based on successive-over-relaxation. The method has been found to 
be very efficient in terms of both computer time and storage. Results of the numerical method 
applied to the flow in spinning and coning cylinders are presented for several cases for which 
experimental data are available. In addition, perturbation methods are used to study the data 
at small coning speeds and small coning angles. Numerical results of this no-coning limit are 
compared with both the numerical data and experimental data at low coning conditions. 
0 1988 Academic Press, Inc. 

We present a numerical method for solving the steady, incompressible 
Navier-Stokes equations in three-dimensional cylindrical geometry. The difference 
scheme is a regularized central difference scheme in the radial and axial direction as 
introduced by Strikwerda [17] with a Fourier method in the azimuthal direction. 
The method is presented as applied to the computation of the flow in a fluid-filled 
cylinder undergoing both a spinning and coning motion. The values of the velocity 
components and pressure are assigned to a common grid, i.e., a non-staggered grid 
is used, and grid stretching is used to improve the resolution near the cylinder walls. 
Because of the regularized difference method, the scheme maintains second-order 
accuracy even for nonuniform grids. The difference equations are solved by an 
iterative method based on successive-over-relaxation as discussed by Strikwerda 
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[IS] and thus requires only one three-dimensional array per dependent variable. 
This offers a significant savings in computer storage over time-marching methods. 
The iterative method uses lines successive-over-relaxation together with an exact 
inversion of the Fourier operator for each line. Each line consists of the points at a 
fixed value of the radial and axial coordinates. 

The study of the flow in fluid-filled spinning cylinders is of importance in several 
areas, especially ballistics. Stewartson [16] studied the inviscid flow in a spinning 
cylinder and Wedemeyer [21,22] applied this theory, along w 
approximations, to the case of high Reynolds number flows. The low 
number case is also of interest since projectiles tilled with highly viscous 
exhibited rapid despin and growth in coning angle. In an effort to under 
phenomenon Miller [S, 91 and D’Amico and coworkers [12] devised experiments 
in which fluid-filled cylinders were subjected to simultaneous spinning and coning 
motions. Various researchers have made analytical studies of the problem, e. 
Herbert [6,7] and Murphy [ 10, 111. A numerical study was done using a finite 
difference, time-marching scheme by Vaughn, Oberkamps, a d Wolfe [20] using a 
method of Chorin [a]. The present method was applied to t is problem because of 
the need for a more efficient and accurate computer code for studying this fluid 
dynamics problem. 

The paper is organized as follows. Section 1 describes the derivation of the 
equations to be solved by the numerical method. Section 2 presents the finite 
ference equations and the Fourier method for the incompressible Wavier&o 
equations. The iterative solution algorithm for the difference equations is discusse 

Section 3. A perturbation expansion in terms off two small 
scussed in Section 4 and in Section 5 computational results are pre 

1. THE EQUATIONS 

Consider a fluid-filled cylinder which is spinning simultaneously about two axes. 
The first axis is that of the cylinder and the second axis, the coning axis, is inc 
to the cylinder axis by a fixed angle 8. Let o be the angular velocity with which the 
cylinder rotates about the coning axis and let Q be the angular velocity of rotation 
about the cylinder axis. The fluid velocity, v and pressure, I’, in the cy~~~der are 
governed by the incompressible Navier-Stokes equations given by 

Dv= -VP+Rp1V2v 

v.v=o, 

in an inertial frame in which the coning axis is fixed. The equations and va 
are non-dimensionalized by using the cylinder radius, a, as the length scale a 
product of the cylinder radius and the spin rate of the cylinder about its axis 
reference velocity, hence the Reynolds number is Q!a2/v, where v is the km 
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viscosity of the fluid. By changing to the non-inertial coordinate frame which 
rotates with angular velocity o about the coning axis the fluid motion becomes 
steady. It is also convenient to compute the difference between the velocity and the 
solid body motion of the cylinder rather than the velocity itself. Similarly, it is con- 
venient to compute with the difference between the pressure and a given function 
that is chosen to simplify the forcing terms arising from the coordinate transfor- 
mations. This transformation was introduced by Vaughn et al. [ZO]. 

Based on these transformations, and using a cylindrical coordinate system 
aligned with the cylinder, the equations describing the flow are 

-RP1V2u+(u.V)u+~--(r,t?)xu+V~=2rsin&cos~k 
ad 

(1.2) 

v-u=o, (1.3) 

where r is the ratio of the angular velocity about the coning axis to that about the 
cylinder axis, i.e., o/L?, and k is the unit vector in the direction of the z axis, the 
cylinder axis, and 

o(z, 0) = 2( -7 sin 0 cos fj, r sin &in f$, 1-t r cos r3)’ 

= 2( 1 + z cos 0) k - 22 sin 68(d) 

in the cylindrical coordinate system, where i(4) is the unit vector in the x direction. 
The X-Z plane is the plane of the two axes which is also the plane 4 = 0. The 
velocity u in Eqs. (1.2) and (1.3) is relative to the solid body rotation of the cylinder 
and in the coordinate system rotating with the coning motion, thus the boundary 
condition for the system (1.2), (1.3) is 

u=o (1.4) 

on the cylinder boundary. The relations between the actual velocity and pressure 
(v, P) in Eq. (1.1) and the computed velocity and pressure (u,p) in Eqs. (1.2) and 
(1.3) are 

u=v-kxr-zxr (1.5) 

p=P-;r2-r2rCOS19- $( r cos f$ cos 0 + z sin S)* + r2 sin2 d), (1.6) 

where r is the vector in the direction of the coning axis with magnitude z. The 
system (1.2), (1.3) holds for 0 s r d 1 and -b ,< z Gb, where b is the aspect ratio of 
the cylinder, defined by the ratio of the length of the cylinder to its diameter. 

In addition to the system (1.2), (1.3), it is also of interest to examine the 
equations resulting from a linearization about r and 13 equal to zero, as will be 
discussed in Section 5. The resulting system is 

-R-‘V2u+%-2kxu+Vp=2rcoq$k 
a4 

(1.7) 

v.u=o. (1.8) 
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This system will also be used to explain the iterative solution algorithm which uses 
a linearization to determine the updates to the solution. 

The choice of the reference velocity used here is the same as that used by IIer 
[6,7] and Vaughn et al. [20], however, it differs from that used in the experime~- 
tal studies by Hepner [S], Nusca et al. [ 121, and in the analytical work of Mur 
[lo, 111. In these works the reference angular velocity is 92 e o cos 0, the an~uIa~ 
velocity in the inertial frame. The nondimensional quantities using this ex~erimen~~I 
reference angular velocity will be distinguished with an asterisk as a superscri 
The relationships between the Reynolds numbers and the relative coning velocities 
are given by 

R" = R( 1 + r cos 8) 

Notice that 

and 

T* = w 
Q + z cos 6 

z 
= 1 + z cos 8’ 

1 + z cos e = 
1 

1 --z* cos 8 

(!,!I) 

T* 
‘t= 

1-z*cose’ 

2. THE NUMERICAL METHOD 

The numerical method to solve the equations of flow is based on the regularize 
finite difference method of Strikwerda [ 171 together with a Fourier or pseudo-spec- 
tral method. Finite differences are used to approximate derivatives in the axial 
radial direction and the Fourier method is used to approximate derivatives in 
azimuthal direction. The Fourier method is much more accurate than the finite 
ference method for periodic independent variables such as 4 (Gottheb and 
[4]), and this allows for a substantial savings in computer storage and thus also in 
computer run time. The regularized differences make it possible to compute both 
the velocity and pressure on the same grid, as opposed to staggered grid rnet~~~s. 
Also, grid stretching is used to place more points in the regions near the container 
walls to better resolve the flow field. The rgularized differences allow this to be done 
simply without loss of accuracy. The nonuniform grid is defined with the use of 
mappings. 

r=ap+(l-cZ)$ (2.1) 
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which map the region 0 <p < 1 and - 1 < [ < 1 onto the cylinder. Because the 
resolution at the end walls was critical to the accuracy of the solution the stretching 
(2.2) was chosen to have the property that d’z/d[’ vanishes at 5 equal to + 1 so as 
to obtain a more uniform stretching there. The values of CI and B are chosen to 
make dr/dp and dz/d[ less than 1 and b, respectively, at p and i equal to 1. The 
variables p, 5, and the angular variable, 4, are discretized using uniform grid 
spacing, i.e., 

Ap = l/(1- l), pi=(i-l)dp, 

A[ = 2/(K- l), 5k=(k-l)4, 

A# = 24 J, #j=((j-1)Aq4. 

The differential equations were written in terms of the new independent variables p 
and i and then differenced using central difference formulas. As an example, 

- ui, j,k) - z tUi,j,k- ui- I,j,k)) &? (2.3) 

where ri= r(p,), r’(p,), etc. The gradient terms and the divergnce terms were 
differenced using regularized differences as introduced by Strikwerda [17]. For 
example, ap/az in (1.2) and au/ar in (1.3) were approximated by 

Pi,j,k+i-Pi,j,k-1 ap 1 ?, 

azi, j,k z’(ck) 24 

-Pi,j,k+2-3Pi,j,k+l +3Pi,j,k-Pisj,k-l 

64. 

dru 1 f”i+l~i+l,j,k-ri-lUi-lI,j,k -z- 

rari, j,k rr’(Pi) ( 24 

ui+l,j,k-3Ui,j,k+3Ui-lI,j,k-Ui-2,j,k - 

6r’bi) AP 

As discussed in Strikwerda [ 171, these regularized differences were used only on the 
terms a&% and ap/& in the pressure gradient and on the terms aru/rdr and aw/dz 
in the divergence equation. The approximations to ap/&h and au/@ will be 
discussed later. 

In the Fourier method approximations to derivatives with respect to the angular 
variable, 4, are obtained as follows, using the pressure as an example. For each 



INCOMPRESSIBLE NAVIER- STOKES EQUATIONS 69 

choice of the radial and axial grid indices, i and k, the discrete function pi,j,k is 
presented using the discrete Fourier transform as 

Pi, j,k = C’ a$t,k sin ncjj + bj>t$ cos nqij, 
If=0 

where aj,$k and a$,2,k are 0, and the prime on the summation indicates that t 
first and last terms are weighted with a f . Similar expressions with coefficients 
afl, k, bj[j, k hold for the velocity components U, u, and W, for I= 1, 2, 3, respectively. 
Consider&g the right-hand side of (2.4) as a continuous function of (s, an 
differentiating this function with respect to 4 we obtain 

(2.5) 

The coefficients a$,:& and b$,‘$ are easily obtained by the use of formulas 

and 

b!,?,k = f :g’ Pi,j,k COS n#j 
J=O 

To maintain the regularity of the difference method (see Bube and Strikwerda 
[I]), the approximations to ap/&b in the pressure gradient in (1.2) and av/@ in the 
divergence equation (1.3) were approximated as in (2.5) with the addition of the 
term 

ib;,y,2,k( - 1)‘n 

to (2.5) and the subtraction of a similar term to compute 8v/&$ The use of the 
factor $ was somewhat arbitrary, however the omission of this term (2.6) led to 
nonconvergence of the solution in almost all cases. The importance of such a term 
can be seen in that, without the term (2.6), the Fourier mode b, J,2,k cos rjj which is 

bi,J/Z,k( - 1)’ 

will not contribute to the derivative (2.5). Thus the scheme would allow grid scale 
oscillations in the 4 direction. The use of this extra term in occurrences of first 
derivatives of the velocity components with respect to 4 in (1.2) or (1.7) resulted in 
poorer performance of the iterative solution algorithm and so was not used. The 
effect of the regularizing terms has to do only with removing high frequency 
oscillations and does not affect the formal accuracy of the method. 
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Along the z axis of the cylindrical coordinate system the values of the velocity 
and pressure were determined by interpolation from the neighboring grid points. In 
particular, 

and 

Pl,j,k= (4p2,k-P3.k)/3? 

where 
1 J 

‘i,k=j ,c wi,j,k 
J=l 

and similarly for @i,k. Note that ~r,~,~ and pl,j,k are independent of j. Because of 
the multiple-valued representation of the velocity along the axis of the cylindrical 
coordinate system we have 

ul, j,k = Ul,k cos 4j + Vl,k sin dJ 

ul,j,k = - u1.k sin dj + V,,k COS dji, 

where U1,k and vi,& are the velocity components on the axis in the Cartesian 
coordinate system. The values of U,,, and Vr,k are given by 

u,,k = t4&,k - 83,k)/3 

vl,k = c4%,k - p3,k)/3 

with 
J 

ui,k=f .c Ui,j,k cos $hj-vi,j,k sin $bj 

J=l 

and 
J 

pi,k=f,x u,j,ksin~j+Vi,j,,COS~j. 
J=l 

As shown in Strikwerda and Nagel [19] this treatment at the origin preserves the 
second-order accuracy of the method. 

The values of the pressure on the cylinder walls were determined by extrapolation 
from the interior by the formulas 

and 

Pl,j,k= 3pI-I,j,k-3PI--2,j,k +PI-3,j,k 

Pi,j.lu=3Pi,j,K--,-3Pi,,j,K--2+Pi,j,R-3 

and similarly for pti, 1. 
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3. THE ITERATIVE SOLUTION ALGORITHM 

The system of nonlinear difference equations is solved using a modihed Line 
successive-over-relaxation method (LSOR). The basic method is describe 
Strikwerda [18] for the case with linear finite difference equations. Becaus 
Fourier method is used in the azimuthal direction it is lmost convenient to us 
SOR, with each line being the grid points in the azimuthal direction for each 
value of the radial and axial coordinates. The coupling between the three velocity 
components and the natural periodicity of the azimuthal coordinate leads to a 
periodic system of equations. 

To describe the solution algorithm it is best to regard the discrete solution 

as continuous functions of I$ with a finite Fourier expansion, that is, as 

The finite difference and Fourier scheme for the linearized problem (1.7) can be 
written as 

where each of A$ and Gf:: are matrices of differential operators in 4. In ~artic~~ar~ 
the operator Ai:: is 

0 

where Li,k is the operator 

The iterative method is then written as 

A#$’ -u~k)=m?Si,k (3.2) 



72 STRIKWERDA AND NAGEL 

where resi,k is the difference of the right-hand and the left-hand sides of Eq. (3.1) 
evaluated using the most current values of u, and o is the SOR iteration parameter. 
Equation (3.2) was solved by computing the Fourier coefficients of the components 
of the velocity residual vector resi,k for the current value of (i, k) and solving for the 
Fourier coefficients of the velocity update u;l’ - uTk. This leads to a set of linear 
equations for the Fourier coefficients of the velocity update which are solved by 
Gaussian elimination. Each linear system is of size at most six by six for the sine 
and cosine terms for each value of n as in (2.4) for the three components of the 
velocity update. 

For the nonlinear system of equations the same algorithm was used with resi,k 
being computed with the addition of the nonlinear convection terms. 

After the velocity was updated at all the grid points by one pass of the LSOR 
operator, the pressure was updated by setting 

(3.3) 

where y is an iteration parameter as described in Strikwerda [18] and V, *is the 
discrete divergence operator. As in Strikwerda [15, 161, we did not attempt to 
satisfy the equation 

but rather 

V, . ui, j,k = 0, (3.4) 

V, * ui, j,k= atz, (3.5) 

where bh is the average value of the discrete velocity divergence. In all the cases 
presented here the value of 6, was on the order of the truncation error. Since the 
method is second-order accurate (Strikwerda L-171) the error reflected in the 6, 
should be consistent with the truncation error of the other equations and the actual 
calculations confirm this. 

As discussed in Strikwerda [17], the difference equation (3.4) with the boundary 
conditions (1.4) will, in general, be an over-specified system and need not have a 
solution. By allowing the divergence of the velocity field to be a constant, but non- 
zero value, the system has a unique solution, This difficulty arises because there is 
no simple discrete analog of the divergence theorem for the grids employed in this 
work. A necessary condition for the differential divergence equation (1.8) to be 
satisfied is that the integral of the normal component of the velocity around the 
boundary vanish. This condition is certainly satisfied if the velocity is zero on the 
boundary. However, it is not clear what the necessary condition is for the discrete 
divergence equation (3.4) to be satisf=d. Moreover, it is evident from numerical 
experiments that this necessary condition need not be satisfied even when the 
velocity vanishes at all boundaries. That is, there need be no solution to the discrete 
equations if one uses (3.4) rather than (3.5). However, there should be solutions 
that agree with (3.4) to within the overall truncation error and by employing (3.5) 
we obtain such a solution. 
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This method has the advantage that only one three-dimensional array is needed 
for each of the velocity and pressure variables as opposed to time-arching metho 
which require two such arrays. The LSOR iteration has a good rate of convergence, 
allowing for the solutions to be computed on a VAX II/780 computer in at most 
several hours of cpu time. Most runs took much less than one hour of cpu time. 

4. PERTURBATION EXPANSIONS IN THE CONING SPEED AND ANGLE 

Many of the experimental results are for small values of the parameters z and 0, 
therefore it is useful to make a perturbation expansion of the solution of the system 
(1.2) and (1.3) in terms of these parameters. Since the forcing term is proportion 
to z sin 6 the velocity and pressure are also proportional to this quantity. Consider 
then the expansion in the form 

(u, p) = z sin 8 f (urn,‘, p”,“) rm sir? 8. (4.1) 
m,n=O 

For each term of the expansion we have 

n,m - v.u -0, 

and each u”*~ vanishes on the boudary. The equation for (u’*‘, p”“) = (u’, p”) is the 
same as (1.7) 

-R-‘V2uo+ (4.2) 

This equation has been analyzed by Gerber et al. [3] for the case of high Reynolds 
number using separation of variables and numerical methods. If we let the operator 
on left side of Eq. (4.2) be denoted by L and w”-” = (PI1, pm’“), we obtain 

and 
LW’-‘= -2kxu’ 

Lwog’=O; 

hence W”, 1 = 0. 
Since the operator L is linear and the forcing term in (4.2) involves only the k = 1 

Fourier mode we see that Wo and W’*’ contain only the k = 1 Fourier mode. 
Similarly for W’T~ and W2ro which satisfy 

L W’s2 = k x u”, LW2,0 = - 2k x ul,O, 

The equation for W’,’ has a right-hand side involving a quadratic in u” and the 
vector i(#) times u”, and thus W’,’ contains only the Fourier modes for k = 0 and 2. 
Similarly, W2, ’ also has only these modes. 
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Similar to Nusca et al. [ 121 we define the coefficient of pressure, C,, as 

max Ipl(r, z)l 8-l 

for values of (Y, z) on the end wall of spinning and coning cylinders, where pr(r, z) 
is the amplitude of the Fourier mode for k = 1. That is, pI(r, z) is determined by 

p(r, 4, z) = f PAT, z) Wkd + Ed. 
k=O 

From the perturbation expansion in r and sin 8, and considering also the solid 
body contribution to the true pressure, e.g., (1.6), we obtain 

C,P, 2) = ~((pY,,(r, 2) + zpi;,O(r, z))‘+ (&Jr, 2) + zp#r, z) + zrzJ2P2 

+ 0(2* sin2 0, r3), (4.4) 

where the subscripts of s and c refer to the coefficients of sin 4 and cos 4. Note that 
the terms for r2 sin 0 arising from W’s’ do not affect C, since W’,’ involves only the 
Fourier modes for k = 0 and 2. Also we set CP to have the same sign as z. 

The coefficients in (4.4) are easily computable. The coefficients py,, and py,, are 
computed by solving Eqs. (4.2). The coefficients pi:,” and pf$ can be obtained either 
by solving the system (4.3) or, as was done here, by solving the system 

0 

-K1V2no+e-2(1+r)kxu”+Vpo=2rcos~k. 
a4 

(4.5) 

This system is obtained by performing an expansion of the solution in terms of sin 6 
only, similar to the way (4.2) was obtained. The system (4.5) was solved for 0 equal 
to 0.0 and for r equal to both a small positive and a small negative value. Accurate 
estimates of pi:,” and pi;: can then be obtained by computing the divided difference 
of the Fourier coefficients of the pressure on the endwall using both values of z. The 
experimental coefficient of pressure, C,*, is related to C, by 

CP 
c,*=(1+zcose)2 

= C,( 1 - z* cos e)‘, 

similar to the relations (1.9). 
The coefficients of liquid roll moment, Clrm, and the coefficient of liquid side 

moment, Clsm, see Murphy [ 10, 111, can also be developed as expansions in z and 
sin 8 using the expansion (4.1). The expansions for C,, and Clsm are 

and 
Clrm = zT,‘,‘(R, b)/2nb + O(T~) 

Clsm = T?‘(R, b)/2nb + O(T), 



INCOMPRESSIBLE NAVIER- STOKES EQUATIONS 75 

where T?’ and T.$* are terms in the expansions of the moments of force resulting 
from (4.i). The yaw moment T$O(R, b), and thus Co ,sm, is easily obtained by soiving 
the system (4.2). The despin moment T, l,l is more difficult to obtain an 
was made to compute it. 

5. COMPUTATIONAL RESULTS 

The numerical method described above has been used to compute the flow in a 
spining and coning cylinder for a large number of cases. Here we present the result 
of a few repesentative runs. A discussion of other cases and their enginee~~g 
significance wiil appear elsewhere. 

Figure 1 displays the data for C: measured on the endwall of the cylinder for t 
case I?* = 3.1, b= 3.148, and 0=2”. Fig. la shows C,*(r, b) at the radial location 
P = 0.667 and Fig. lb shows the same quantity at r = 0.434 . The results of t 
putations are marked with a x and the gyroscope data of Hepner [S] are m 
with a ‘. In addition to the data points, the curve giving CT as a function OI 

based on the expansion (4.4) for C, is also disp . Note that the co 
solution and the curve based on (4.4) are not co tely independent si 
numerical method to compute the coefficients in (4. IS essentially the sa 

asic numerical method. Analytical results of Sedney [ 15 ] agree qualitatively with 
8ur computational results. 

CP' 

FIG. 1. (a) C; YS T* at radius = 0.667; (b) C; vs T* at radius = 0.434. 
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Figure 2 displays the coefficient of pressure C,* on the endwall as a function of 
radius for 8 equal to 2” and two different values of z*. Figure 2a shows results for 
z* = 0.350 and Fig. 2b displays results for z* = 0.100, the experimental data and 
numerical results are marked as in Fig. 1. In both figures the excellent agreement 
between the basic numerical results and the perturbation results verifies the essen- 
tial linearity of the problem for small values of r and 0. 

These calculations were made with I= 11, J= 6, K= 33, with grid stretching 
parameters a and /I chosen so that the drldp was 0.8 at r = 1.0 and dz/dc was 0.8b at 
z = b. The run with z = 0.350 took 82 iterations until the Z2 norm of the changes in 
each variable was less than 10e4. This took approximately 550 s cpu time on the 
Vax 11/780 at the Mathematics Research Center. 

Figure 3 displays CpS, as a function of the Reynolds number, R, for the case 
b = 2.20 for R between 0 and 350. At r equal to zero the side moment vanishes, 
nonetheless CpS, need not vanish due to the scaling by r in the definition of CIsm. 
CpS, is proportional to the derivative of the side moment with respect to r at r equal 
to zero. Since Clsm is related to the yaw moment, a negative value of this quantity 
indicates a tendency to decrease the angular velocity about the coning axis and a 
positive value indicates a tendency to increase this angular velocity. The variation 
in the sign of Clsm with increasing R is due to the reduction of the viscous effects on 
the moment as R is increased. Indeed, the contribution to CpS, of the pressure on 
the side wall is of positive sign, the other contributions, i.e., pressure on the end 
wall and the viscous contribution, are all negative for this value of the aspect ratio. 

0.0 I 1 1 
0.0 02 0.4 0.6 0.6 1.0 

Radius 

b 0.15 I I / 1 

FIG. 2. (a) C,* vs radius at T* =0.350; (b) Cz vs radius at z* =O.lOO 
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FIG.~. Coefficient of liquid side moment: ASP. = 2.200; T = 0.000 

As the Reynolds number increases the viscous side wall contribution decreases in 
magnitude changing the sign of CL,. A significant factor in the flight instability of 
liquid filled projectiles is an increase in the coning angular velocity and is most 
likely related to the positive values of CL, shown in Fig. 3. Notice that in the limit 
of z equal to zero there is no distinction between R and I?*. 

0=2” Flight data Computation 

R’ b c *ml c IEnJ c lml c !XD 

10.0 0.091 4.32 - 0.025 0.020 -0.02375 0.02437 
20.0 0.087 5.20 - 0.040 0.040 - 0.02984 0.03571 
45.2 0.123 4.23 -0.055 0.050 - 0.04454 0.04714 

This table displays the moment values obtained by M. Nusca [13] using our 
code at Bahstic Research Laboratory with experimental data obtained by 
Pope [ 141. Values are given for both Clrm and C&. The code-venerated moments 
agree with the experimental values to within the estimated experimental error. 

6. CONCLUSIONS 

The numerical method presented in this paper has been shown to be an efficient 
and accurate method for computing solutions to the steady i~cornp~ess~~~~ 
Navoer-Stokes equations in three dimensions. The method has been applied to the 
computation of fiows in cylinders undergoing spinning and coning motion an 
results agree well with experimental data. The use of the perturbation a~.a~ysis 
corroborates the accuracy of the calculations. 
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